
Wasm Garbage
Collection in JSC
Asumu Takikawa (Igalia)
WebKit Contributors Meeting 2023

Photo credit: https://www.pexels.com/@zydeaosika-2261055/

♺Motivation of
proposal

Wasm is a target language for
compiling web programs

Wasm MVP great for C/C++/Rust
programs
● Works well for languages without GC/managed runtimes

● But what about programs in languages needing GC?

Key missing piece was Wasm
support for allocatable memory

with GC

GC Proposal
enables those

languages

● Supports allocatable data types

like structs & arrays
● New kinds of reference types

pointing to allocated values

● Type casts & advanced types

● Takes advantage of browser JS

engines’ built-in GC
+GC

https://github.com/WebAssembly/gc/
for the nitty-gritty details

https://github.com/WebAssembly/gc/

A concrete example

(module
 (type $s (struct (field $x i32)
 (field $y i32))
 (global (ref $s)
 (struct.new (i32.const 42)
 (i32.const 42)))
 (func $get-x (param (ref $s)) (result i32)
 (struct.get $s $x (local.get 0))))

New type
declaration

form

A concrete example

(module
 (type $s (struct (field $x i32)
 (field $y i32))
 (global (ref $s)
 (struct.new (i32.const 42)
 (i32.const 42)))
 (func $get-x (param (ref $s)) (result i32)
 (struct.get $s $x (local.get 0))))

Globals can
be init with
new types

A concrete example

(module
 (type $s (struct (field $x i32)
 (field $y i32))
 (global (ref $s)
 (struct.new (i32.const 42)
 (i32.const 42)))
 (func $get-x (param (ref $s)) (result i32)
 (struct.get $s $x (local.get 0))))

New instructions
to access GC

data

A concrete example

(module
 (type $s (struct (field $x i32)
 (field $y i32))
 (global (ref $s)
 (struct.new (i32.const 42)
 (i32.const 42)))
 (func $get-x (param (ref $s)) (result i32)
 (struct.get $s $x (local.get 0))))

Ref types let you
reference GC

values

♺Progress in JSC

We’re
implementing

Wasm GC for JSC

● WIP implementation underway

● Most features already

implemented

● Should get to shippable state in

a few months��

What’s implemented & what’s not

✅ Structs/arrays

✅ i31 references

✅ Type hierarchy

✅ Subtyping

✅ Recursive types

✅ Type casts

✅ Locals with non-nullable types

✅ Table initializers

*⃣ JS API support

🅾 Bulk array operations

🅾 Misc other missing instructions

Plus more testing and optimization!

✅ Done

*⃣ Partial

🅾 TODO

To track our progress: ☂
https://bugs.webkit.org/show_

bug.cgi?id=247394

https://bugs.webkit.org/show_bug.cgi?id=247394
https://bugs.webkit.org/show_bug.cgi?id=247394

♺The takeaway

This is an exciting time for Wasm!

● Other browsers have shipped or will ship Wasm GC soon

(the proposal is at phase 4)

● Once JSC also ships, Wasm GC supported in all major

browser engines

● Developers can then target Wasm with Java, OCaml, and

many more languages to come

Future Wasm will likely build further on GC

��

♺Q & A
Thanks for listening!

